Paper Highlights How Cells Respond to Stress Conditions

Got a Question? Request a Callback

Paper Highlights How Cells Respond to Stress Conditions

Dr Burga Kalz Fuller, Product Manager at HypOxygen (Don Whitley Scientific’s Hypoxystation provider in the USA/Canada) summarises a study entitled “Adaptation to Stressors by Systemic Protein Amyloidogenesis”. The paper, by Whitley Hypoxystation users Tim Audas and Stephen Lee, details how certain cells activate a process of systemic amyloidogenesis, which allows them to survive during difficult conditions.

Cells facing environmental threats have developed numerous coping mechanisms, and Hypoxystation users Tim Audas and Stephen Lee have uncovered a fascinating new cellular strategy to remain viable under stress and restore homeostasis when the crisis ends. In their recent paper “Adaptation to Stressors by Systemic Protein Amyloidogenesis“, they describe a physiological process of amyloidogenesis which cells activate under stress conditions, such as hypoxia and acidosis, to remove copious amounts of heterogeneous proteins from circulation, enabling cells to survive in a dormant state. This discovery expands our current view of amyloids as a rare and pathological phenomenon associated with neuropathies such as Alzheimer’s and Parkinson’s diseases, and exposes a novel post-translational, regulatory form of protein organization.

Using a combination of Congo red staining, proteinase K digestion, and OC antibody detection on cells exposed to a variety of stimuli in the Hypoxystation, Audas et al. were able to identify nuclear foci consisting of immobilized, insoluble protein in a crossed β-sheet conformation which they named A-Bodies. In amyloidogenic proteins such as VHL and RNF8, an ACM (amyloid-converting motif) containing arginine and histidine was identified as essential for capture specifically in the A-bodies; a similar motif was also identified in the pathological β-amyloid associated with Alzheimer’s disease. Upon environmental insult, the ACM interacts with ribosomal intergenic spacer RNA (rIGSRNA) to concentrate the proteins and trigger their polymerization in the A-bodies allowing the cells to enter a dormant state.

Audas et al. exerted this type of severe stress on the cells through incubation at pH 6.0 and 1% oxygen in the H35 Hypoxystation by Don Whitley Scientific. The Hypoxystation’s closed workstation format and rigorous control of oxygen, CO2, temperature and humidity facilitate accurate regulation of cell culture conditions as the in vivo situation of adverse environmental stimuli is simulated. Upon reversion to standard growth conditions (21% oxygen and pH 7.4), the A-bodies dissipated within 4 hours and protein was refolded into the native conformation. The hypoxic and acidotic conditions simulated in the Hypoxystation are also characteristic of the tumor microenvironment, where mouse xenograft assays identified the same process of rIGSRNA-mediated A-body formation causing cancer cell dormancy.

Read more on this paper by HypOxygen

Read the full paper here

Choose Langauge

Please select your preferred language from the list below

Contact Us
We are here to help

Share this

Please select your preferred language from the list below

Login

Forgot your password? Click Here