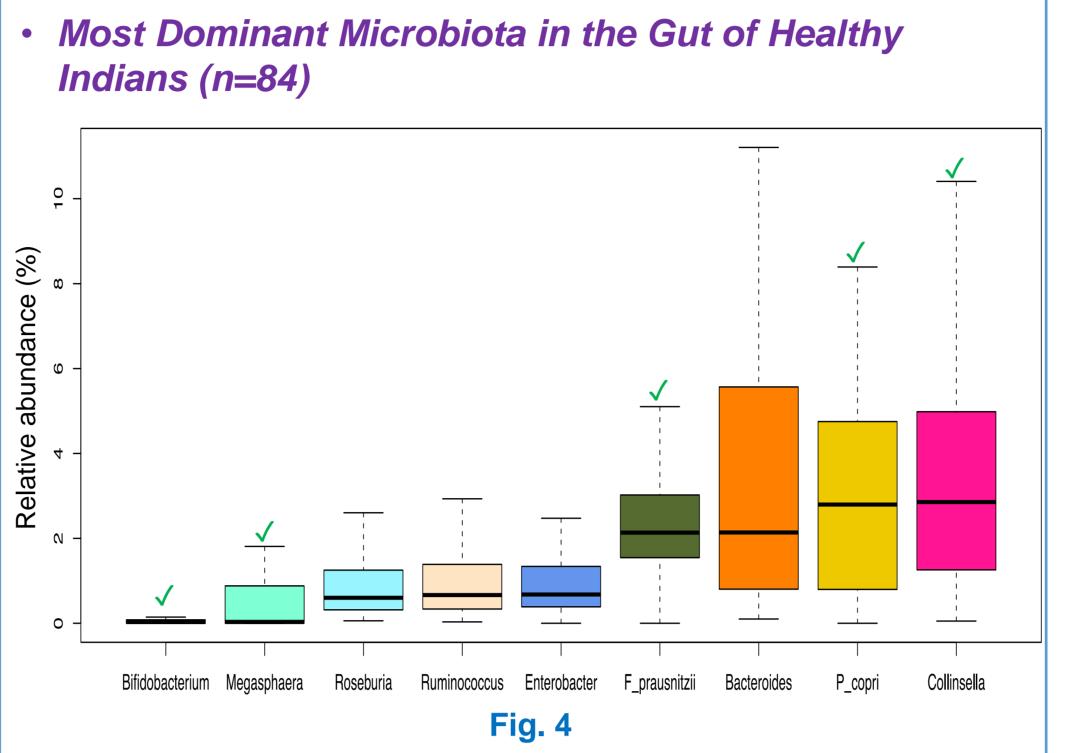
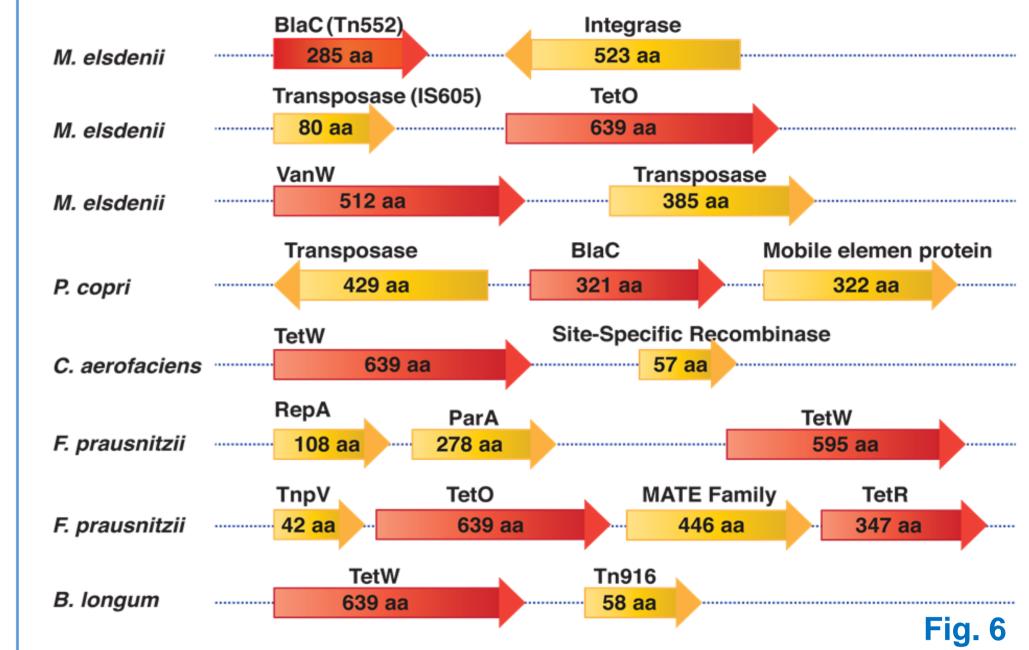


# **Molecular Insights into Antimicrobial Resistance Traits of** Multi Drug-Resistant Commensal Human Gut Microbiota




Satyabrata Bag, Tarini Shankar Ghosh, Jyoti Verma, Ojasvi Mehta,

Thandavarayan Ramamurthy, Bhabatosh Das


Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India

# INTRODUCTION

Antimicrobial resistance (AMR) is a serious concern for public health authorities at global level. Irrational use of antibiotics in healthcare and livestock provides evolutionary advantage to the resistant variants to dominate the ecosystem. Resistance phenotype is very common in enteric bacteria. The most common mechanisms of resistance to the antimicrobials are enzymatic modifications to the antimicrobials or their target molecules. AMR determinants are generally linked with mobile genetic elements and could rapidly disseminate to the bacterial pathogens through horizontal gene transfer. Prevalence of AMR genes among pathogenic bacteria is widely studied but the resistance profile and the genetic traits that encode resistance to the commensal microbiota living in the gut of healthy humans are not well-studied.

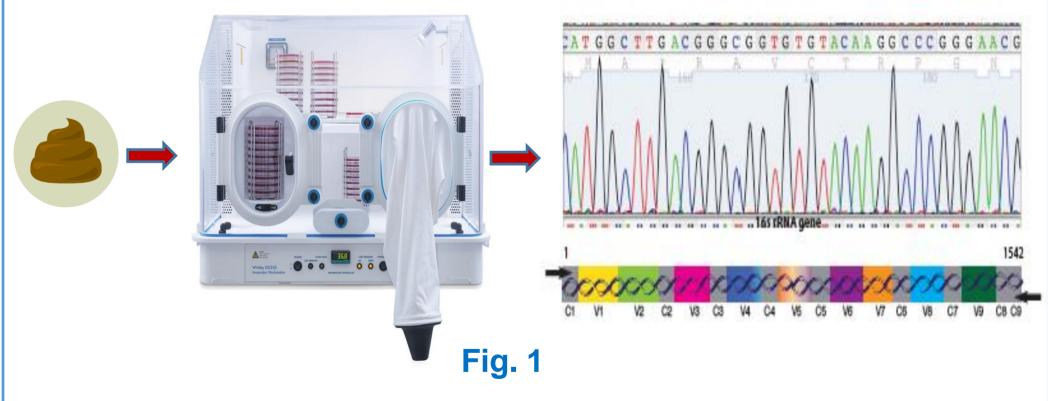


AMR genes are often physically linked with mobile genetic elements



In the present study, we have isolated five dominant commensal anaerobic bacteria from the gut of healthy Indians and revealed the genotype and phenotypes of antimicrobial resistance of all the isolates. Antibiogram profile of all the five bacteria was determined. Our study revealed that all the five enteric commensals are multidrug resistant. The genes encoding antibiotic resistance are physically linked with mobile genetic elements and could disseminate vertically to the progeny and laterally to the distantly related microbial species. Hence commensals microbiota could be a potential source of resistance genes to the enteric pathogens.

# **METHODS**


 Isolation of commensal human gut microbiota Five dominant commensal bacteria (Faecalibacterium prausnitzii • Dominant commensal gut bacteria are multidrug *resistant* (MIC values in µg/ml are shown in brackets)

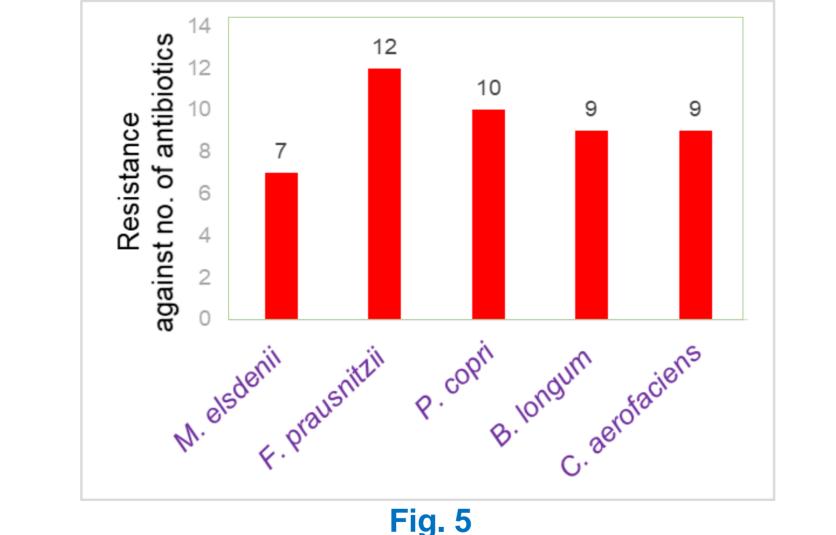
#### Table 1 *P*. **C**. М. Β. prausnitzii elsdenii longum aerofaciens copri Ampicillin R (8) R (2) R (>256) S (0.19) S (0.38) S (0.023) S (0.25) Amoxicillin S (0.5) S (0.5) S (0.125) R (>256) R (>256) R (128) R (16) R (24) Aztreonam Cefotaxime S (4) R(>32) S (0.25) S (1) R(>32) Ceftriaxone S (6) S (4) S (0.75) S (2) R (>256) S (0.047) R (>32) Ciprofloxacin R (>32) R (>32) R (24) S (0.032) Clindamycin S (<0.016) S (<0.016) S (0.016) S (<0.016) S (0.094) R (>256) S (0.023) R (>256) R (>256) Colistin S (1) R (64) S (0.064) S (1.5) S (2) Erythromycin R (24) S (4) R (96) S (3) S (1.5) Gentamycin

AMR genes are prevalent both in commensal and pathogenic bacteria

| Bacteria TetO                | Alignment score (%) | Bacteria                  | BlaA   | Alignment score (%) |
|------------------------------|---------------------|---------------------------|--------|---------------------|
| M. elsdenii Indica 639 aa    | 100                 | <i>M. elsdenii</i> Indica | 285 aa | 100                 |
| S. pyogenes 639 aa           | 94.67               | C. kluyveri               | 310 aa | <b>4</b> 8.59       |
| F. prausnitzii Indica 639 aa | 94.36               | B. clausii                | 301 aa | 43.66               |
| S. suis 639 aa               | 76.83               | N. dassonvillei           | 317 aa | <b>41.19</b>        |
| C. difficile 644 aa          | 77.33               | B. subtilis               | 306 aa | <b>•</b> 43.30      |
| L. intracellularis 639 aa    | 68.23               | B. anthracis              | 309 aa | <b>4</b> 0.14       |
| B. animalis 412 aa           | 68.40               | S. arenicola              | 300 aa | 40.84               |
| Bacteria TetW                | Alignment score (%) | O. iheyensis              | 304 aa | 38.38               |
| C. aerofaciens Indica 594 aa | ····· 100           | A. mirum                  | 305 aa | 38.38               |
| F. prausnitzii Indica 639 aa | 96.29               | Bacteria                  | BlaC   | Alignment score (%) |
|                              | 87.95               | <i>M. elsdenii</i> Indica | 428 aa | 100                 |
|                              | 67 60               | C. kluyveri               | 423 aa |                     |
| C evie                       | 68.54               | B. clausii                | 430 aa | <b>3</b> 0.84       |
| 000 dd                       | 69.07               | Bacteria                  | BlaA   | Alignment score (%) |
| C. difficile 644 aa          |                     | P. copri Indica           | 320 aa | 100                 |
| Bacteria BlaC Al             | lignment score (%)  | B. thetaiotaomicron       | 293 aa | 37.54               |
| P. copri Indica 508 aa       | 100                 | B. fragilis               | 311 aa | 34.08               |
| B. marina 389 aa             | 32.64               | B. vulgatus               | 319 aa | 31.03               |
| Bacteria Vex2                | Alignment score (%) |                           |        |                     |
| B. longum Indica 211 aa      | . 100               |                           |        |                     |
| C. difficile 218 aa          | 55.92               |                           |        |                     |
| E. faecalis 218 aa           | . 55.92             |                           |        |                     |
| S. pneumoniae 215 aa         | . 54.97             |                           |        |                     |
| C. tetani 226 aa             | . 36.01             |                           |        |                     |
| S. coelicolor 264 aa         | . 35.54             |                           |        | <b>Fig. 7</b>       |

Indica, Megasphaera elsdenii Indica, Prevotella copri Indica, Collinsella aerofaciens Indica, Bifidobacterium longum Indica) were isolated from fresh faecal samples of healthy subjects using an anaerobic workstation (Whitley DG250) filled with 80 %  $N_2$ , 10% CO<sub>2</sub> and 10 % H<sub>2</sub> and their identity was confirmed by 16S rRNA gene sequencing.

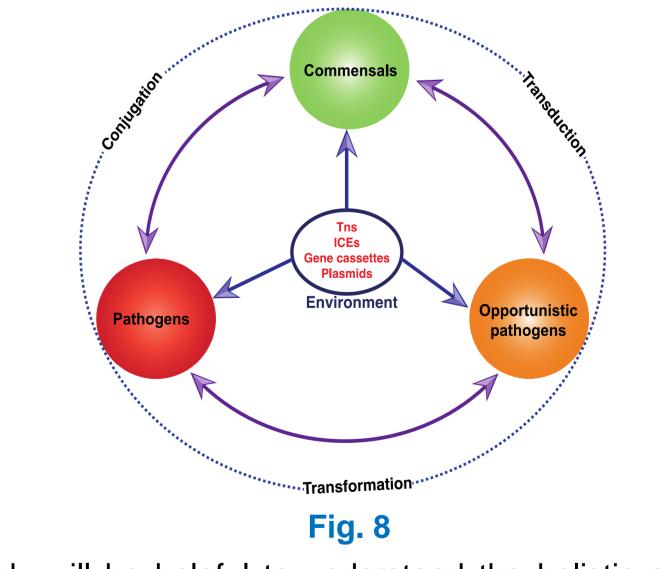



 Antimicrobial susceptibility testing Minimal inhibitory concentration of 21 different antibiotics (Table 1) for all the five gut commensals were determined using commercially available E-test strip.



### Whole genome sequencing

Whole genome sequencing (WGS) of all the five commensal gut bacteria was performed either in Oxford nanopore, Illumina or GS


| Imipenem             | S (0.008)  | S (0.19)  | S (0.064)  | S (0.064) | S (0.032) |
|----------------------|------------|-----------|------------|-----------|-----------|
| Kanamycin            | R (32)     | R (32)    | R (>256)   | R (>256)  | R (32)    |
| Linezolid            | S (0.38)   | S (2)     | S (1)      | S (0.38)  | S (0.75)  |
| Meropenem            | S (<0.002) | S (0.19)  | S (0.047)  | S (0.032) | S (0.125) |
| Nalidixic acid       | S (12)     | R (192)   | R (>256)   | R (>256)  | R (>256)  |
| Piperacillin         | R (>256)   | S (1)     | l (64)     | S (0.25)  | S (0.75)  |
| Polymixin            | S (0.19)   | R (192)   | S (<0.064) | R (128)   | R (512)   |
| Rifampicin           | S (2)      | S (0.25)  | S (0.032)  | S (0.25)  | S (0.004) |
| Sulfamethoxa<br>zole | R (256)    | R (>1024) | R (>1024)  | R (>1024) | R (64)    |
| Tetracycline         | I (12)     | R (>256)  | S (0.064)  | R (>256)  | R (64)    |
| SXT                  | R (3)      | R (24)    | R (1.5)    | R (>32)   | R (3)     |





# DISCUSSION

- Commensal human gut microbiota could be a potential source of AMR genes to the enteric pathogens.
- We proposed a model of resistance traits dissemination among commensals, opportunistic pathogens and pathogenic bacterial species.



• This study will be helpful to understand the holistic picture of the

FLX+ platforms and their genomes were annotated by Rapid Annotations using Subsystems Technology (RAST) server.

## RESULTS

Gut microbiome of healthy Indians are reservoir of several antibiotic resistance genes



 WGS revealed gut commensals are enriched with *multiple AMR genes* 

| Table 2                                                 |                |                   |             |              |                   |  |  |  |  |
|---------------------------------------------------------|----------------|-------------------|-------------|--------------|-------------------|--|--|--|--|
|                                                         | M.<br>elsdenii | F.<br>prausnitzii | P.<br>copri | B.<br>Iongum | C.<br>aerofaciens |  |  |  |  |
| Genome<br>Size (Mb)                                     | 2.4            | 2.9               | 3.9         | 2.4          | 2.3               |  |  |  |  |
| GC content<br>(%)                                       | 53.2           | 56.9              | 45.4        | 60.0         | 60.1              |  |  |  |  |
| No. of<br>coding<br>sequences                           | 2184           | 2707              | 3128        | 2006         | 1895              |  |  |  |  |
| Resistance<br>to<br>Antibiotics &<br>toxic<br>compounds | 39             | 51                | 44          | 29           | 25                |  |  |  |  |
|                                                         |                |                   |             |              |                   |  |  |  |  |

prevalence of AMR genes in commensals and pathogens and help in antibiotic therapy and infectious disease management.

# CONCLUSION

- Genomes of commensal bacteria encode several AMR functions.
- AMR genes are often linked with mobile genetic elements.
- Dominant gut commensals studied here are multi drug resistant.
- Gut microbiome of healthy Indians are reservoir of several antibiotic resistance genes.

# ACKNOWLEDGEMENT

Authors acknowledge Mr Dhiren, Mr Pawan and Ms Mayanka for technical support; Department of Biotechnology, Govt. of India for funding and Don Whitley Scientific, UK for travel grant.